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Abstract. A Hilbert curve is constructed on  the Sierpinski gasket. It is shown that despite 
the fact that the Sierpinski gasket is rigorously self-similar, the Hilbert curve is merely 
self-affine. 

Until quite recently, it was commonly held that self-similarity is the essential attribute 
of a fractal structure, and which property posits the existence of a generally non-integral 
fractal dimension for that structure. Needless to say, this fractal dimension can be 
obtained from observing the similarity of the structure at any two well defined levels 
of resolution; consequently, it is really a similarity dimension. Thus, the similarity 
dimension of a Sierpinski gasket is log(3)/log(2), because at a given level of resolution 
the gasket contains three structures, each of which is exactly the gasket as observed 
when the resolution becomes coarser by a factor of two (Mandelbrot 1983). Most 
natural fractals, however, cannot show such a well ordered similarity; hence, various 
experimental and numerical procedures have been utilised in attempts to arrive at a 
fractal dimension for such structures like thin films (Messier and Yehoda 1985) and 
diffusion-limited aggregates (Witten and Sander 1981). It was soon found that unless 
the fractal was rigorously self-similar, fractal dimensions deduced from various pro- 
cedures, e.g. from the mass-radius relationship (Meakin 1983) or from the density- 
density correlations (Meakin 1985), were not all equal, but hovering around, if indeed 
there were some elusive number whose existence could merely be conjectured. 

There is now a growing debate on the attribute of self-similarity being the basis 
for the definition of fractal structures. Thus, on looking at the successive magnification 
stages of a thin-film surface (Messier and Yehoda 1985), it is readily apparent that 
they look alike, but they are certainly not identical. Hence, the notion of a similarity 
dimension is inapplicable for such a structure. Nonetheless, were one to concentrate 
on an appropriately small domain on the thin-film surface, one would obtain reasonably 
congruent values of fractal dimensions determined from different methodologies: one 
could then take the mean of the various fractal measures to arrive at a local fractal 
dimension. But this local dimension would vary from locale to locale on the same 
film, confounding thereby any attempt to construe a global fractal dimension, unless, 
of course, the film were to be merely a small perturbation of a rigorously self-similar 
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structure. A similar conclusion has been mentioned by Lovejoy and Schertzer (1985) 
when they examined the stratification of clouds, and found that a large cloud could 
have several widely differing local fractal dimensions. 

Consequent to the argument that such structures are neither rigorously self-similar 
nor are they perturbations of rigorously self-similar structures but they do possess 
small-range (fractal) order, it may be that self-similarity should not be considered the 
essential attribute of fractals. Instead, self-affinity should be, and self-similarity is a 
special case of this property. To understand self-affinity, consider a variant of the now 
famous question: how long is the coastline of continental Europe, excluding all islands? 
By measuring it as a function of the scale used to measure it, one can deduce some 
fraction which can be related to the fractal dimension of the European coastline. Let 
also the fractal dimensions of the coastlines of, say, France, Spain and Portugal be 
similarly ascertained. Inferences drawn from Richardson's experiments (Mandelbrot 
1983) on several politico-geographical boundaries would have us believe that the 
fractal dimensions of these four coastlines could be all non-trivially different, but all 
lying within the same order of magnitude. And if the measurements are repeated for 
the coastlines of Artois, Normandy, Brittany and Gascony, still different local fractal 
dimensions would presumably be found. Yet most beaches look alike; one can conclude 
that the coastline of Europe is self-affine, but not self-similar. However, should one 
repeat this sequence on, say, a Koch triad (Mandelbrot 1983), one would end up with 
identical local fractal dimensions: this is due to the fact that the Koch triad is selfsimilar. 
Recently, Mandelbrot (1985, 1986) has elaborated on the difference between the 
attributes of self-similarity and self-affinity, and to which we refer the interested reader. 
Our aim here is simply to pose a question to the investigators in this area: can rigorously 
self-similar fractals also possess attributes that are merely self-affine? 

In order to answer this question, we concentrate upon the well known Sierpinski 
gasket which is undoubtedly self-similar in the strictest sense. But, instead of modelling 
the gasket as a collage of triangles as is commonly done (Mandelbrot 1983), we 
represent it by a collection of nodes arranged on a triangular lattice. At a level of 
evolution L, LS 1, the Sierpinki gasket consists of 2 L  rows, the inter-row distance 
being a, while the nodes on any given row are separated from each by distances which 
are multiples of 26, 0 < tan- '(b/a) < 7r/2. It is convenient to describe the Sierpinski 
gasket, modelled as a collection of nodes, by the recursive function fL defined by 

fL(X, Y )  =fL-I(x, Y)*gL(x ,  Y )  (1) 

~ I ( X , Y ) = S { ~ , Y } + ~ { X - ~ ,  y - b } + 6 { ~ - a , y + b }  (2) 

where * is a convolution operator (Goodman 1968), the initiator is 

the generator is 

and 6 {  } is the Dirac delta function. It is easy to see that if the gasket evolves from 
stage L to stage L+ 1, then its maximum linear dimension, measured in terms of the 
occupied rows, doubles; but the number of nodes increases by a factor of 3, regardless 
of L; hence, it possesses a similarity dimension of log(3)/log(2). 

Proceeding with these collections of nodes, we join them together with straight-line 
segments in order to connect all nodes on the gasket of a given level L. Care must be 
taken to ensure that those nodes of the triangular grid which are not part of the gasket 
do not lie on the curve thus formed. In addition, only two line segments should meet 
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at any given node on the gasket, with the exception of the two extrema1 nodes. In this 
way, the curve formed does not have tendrils hanging out from it and neither does it 
contain any closed loops. It will be found that only two curves satisfying these 
conditions are possible, one of which is illustrated in figure 1 ,  and the other is its 
mirror reflection. Both curves are Hilbert curves, being space-filling in nature; their 
slopes are discontinuous at (3L - 2) points. 

21 

26 

Figure 1. Illustration of the construction of a Hilbert curve on a Sierpinski gasket. 

Are these curves themselves fractals? It certainly would appear so because the 
rules for generating are not only rigorously precise, but they are also recursive over 
the gasket evolutionary levels. In figures 2 and 3, the Hilbert curves are shown for 
levels L = 4 and 6, respectively, when a = 6 = 1.  It may be observed from there that 
they are certainly related very strongly; not surprisingly, because they form the medulla 
oblongata of rigorously self-similar gaskets. In order to obtain a fractal dimension, if 
any, of this curve, we computed the length A, of the Hilbert curve for different values 
of L and defined a descriptor 

R L I L - ~  = log{AL/AL-iI/log(2). (4) 

Shown in table 1 are the computed values of R L I L - 1  when a = 6 = 1. It is observed 
from this table that as L increases, then R L I L - 1  asymptotically tends to reach a value 
of log(3)/log(2), the similarity dimension of the Sierpinski gasket. It can be easily 
shown that 

A L z 3 A L - l  + J [ u ~ + ( ~ ~  - 1)*b2] + ~ ‘ [ ( 2 ~ - ’  - 1 ) 2 ~ 2 +  (2L-1+ 1)2b2] ( sa)  

A ,  =26+V’[a2+b2] ( 5 6 )  
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Figure 2. Hilbert curve drawn on a Sierpinski gasket of level L = 4; a = b = 1. 
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Figure 3. Hilbert curve drawn on a Sierpinski gasket of level L = 6 ;  a = b = 1. 

from which it is easy to deduce the limit of R L I L - 1  as L goes to infinity. The reason 
why it is never equal to the similarity dimension of the gasket is because of the presence 
of the line segments joining the lower level gaskets which together form the gasket of 
the higher level, e.g. the line segments joining nodes 3 and 4, and joining nodes 9 and 
10 in figure 1. As L increases the contribution of such line segments to A L  decreases, 
and ALIAL-,  tends to 3. 

The self-affinity of the Hilbert curve, thus, may not be doubted. Note, however, 
should be taken of the fact that a Hilbert curve of level L contains the Hilbert curves 
of all of the lower levels. Depending upon the ability to resolve the curve, it will be 
found that the local descriptors are quite different from the global descriptor. 

This research was supported in part by the US Air Force Office of Scientific Research 
under Grant No AFOSR-84-0149. 
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Table 1. Fractal descriptors RL,L- ,  computed for a Hilbert curve on a Sierpinski gasket 
for which a = b. Note that the similarity dimension of the Sierpinski gasket is 
log(3)/log(2) = 1.58496 

2 2.278 70 
3 1.917 92 
4 1.7?4 95 
5 1.700 70 
6 1.657 86 
7 1.631 80 
8 1.615 43 
9 1.604 94 

10 1.598 14 
15 1.586 66 
20 1.585 19 
25 1.584 99 
30 1.584 97 
32 1.584 96 
35 1.584 96 
45 1.58496 
60 1.584 96 
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